Second derivative Lipschitz type inequalities for an integral transform of positive operators in Hilbert spaces
Main Article Content
Abstract
For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform
D (w, µ) (T ) := ∫0∞w (λ) (λ + T ) −1 dµ (λ) ,
where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A ≥ m 1 > 0, B ≥ m 2 > 0, then
||D (w, µ) (B) − D (w, µ) (A) − D (D (w, µ)) (A) (B − A)||
≤|B − A|2×[D(w,µ)(m2)−D(w,µ)(m1)−(m2- m1)D’(w,µ)(m1)]/(m2−m1)2 if m1≠m2,
≤ D’’(w, µ)(m)/2 if m1=m2=m,
where D (D (w, µ)) is the Fréchet derivative of D (w, µ) as a function of operator and D’’(w, µ) is the second derivative of D (w, µ) as a real function.
We also prove the norm integral inequalities for power r ∈ (0, 1] and A, B ≥ m > 0,
||∫01((1−t)A+tB)r−1dt−((A+B)/2)r−1|| ≤ (1−r) (2−r) mr−3||B−A||2/24
and
||((Ar−1+Br−1 )/2) − ∫01((1−t) A+tB)r−1dt|| ≤ (1−r) (2−r) mr−3||B − A||2/12.
Downloads
Metrics
Article Details
References
[2] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl. 208/209 (1994), 367 – 376.
[3] R. Bhatia, Perturbation bounds for the operator absolute value. Linear Algebra Appl. 226/228 (1995), 639 – 645.
[4] R. Bhatia, “ Matrix Analysis ”, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
[5] R. Bhatia, D. Singh, K.B. Sinha, Differentiation of operator functions and perturbation bounds, Comm. Math. Phys. 191 (3) (1998), 603 – 611.
[6] R. Coleman, “ Calculus on Normed Vector Spaces ”, Springer, New York, 2012.
[7] Yu.B. Farforovskaya, An estimate of the nearness of the spectral decompositions of self-adjoint operators in the Kantorovic-RubinÜtein metric (in Russian), Vestnik Leningrad. Univ. 4 (1967), 155 – 156.
[8] Yu.B. Farforovskaya, An estimate of the norm kf (B) − f (A)k for selfadjoint operators A and B (in Russian), Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976), 143 – 162.
[9] Yu.B. Farforovskaya, L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz 20 (3) (2008), 224 – 242; translation in St. Petersburg Math. J. 20 (3) (2009) 3, 493 – 506.
[10] J.I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301 – 306.
[11] T. Furuta, Precise lower bound of f (A) − f (B) for A > B > 0 and non-constant operator monotone function f on [0, ∞), J. Math. Inequal. 9 (1) (2015), 47 – 52.
[12] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. (in German) 123 (1951), 415 – 438.
[13] T. Kato, Continuity of the map S → |S| for linear operators, Proc. Japan Acad. 49 (1973), 143 – 162.
[14] K. Löwner, Über monotone MatrixFunktionen, Math. Z. (in German) 38 (1934) 177 – 216.