Second derivative Lipschitz type inequalities for an integral transform of positive operators in Hilbert spaces

Main Article Content

S.S. Dragomir

Abstract

For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0, ∞) we consider the following integral transform


D (w, µ) (T ) := ∫0w (λ) (λ + T ) −1 dµ (λ) ,


where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We show among others that, if A ≥ m 1 > 0, B ≥ m 2 > 0, then


||D (w, µ) (B) − D (w, µ) (A) − D (D (w, µ)) (A) (B − A)||


≤|B − A|2×[D(w,µ)(m2)−D(w,µ)(m1)−(m2- m1)D’(w,µ)(m1)]/(m2−m1)2    if m1≠m2,


≤ D’’(w, µ)(m)/2   if m1=m2=m,


where D (D (w, µ)) is the Fréchet derivative of D (w, µ) as a function of operator and D’’(w, µ) is the second derivative of D (w, µ) as a real function.


We also prove the norm integral inequalities for power r ∈ (0, 1] and A, B ≥ m > 0,


||∫01((1−t)A+tB)r−1dt−((A+B)/2)r−1|| ≤ (1−r) (2−r) mr−3||B−A||2/24


and


||((Ar−1+Br−1 )/2) − ∫01((1−t) A+tB)r−1dt|| ≤ (1−r) (2−r) mr−3||B − A||2/12.


 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Dragomir, S. (2022). Second derivative Lipschitz type inequalities for an integral transform of positive operators in Hilbert spaces. Extracta Mathematicae, 37(2), 261-282. https://doi.org/10.17398/2605-5686.37.2.261
Section
Operator Theory

References

[1] H. Araki, S. Yamagami, An inequality for Hilbert-Schmidt norm, Comm. Math. Phys. 81 (1981), 89 – 96.
[2] R. Bhatia, First and second order perturbation bounds for the operator absolute value, Linear Algebra Appl. 208/209 (1994), 367 – 376.
[3] R. Bhatia, Perturbation bounds for the operator absolute value. Linear Algebra Appl. 226/228 (1995), 639 – 645.
[4] R. Bhatia, “ Matrix Analysis ”, Graduate Texts in Mathematics, 169, Springer-Verlag, New York, 1997.
[5] R. Bhatia, D. Singh, K.B. Sinha, Differentiation of operator functions and perturbation bounds, Comm. Math. Phys. 191 (3) (1998), 603 – 611.
[6] R. Coleman, “ Calculus on Normed Vector Spaces ”, Springer, New York, 2012.
[7] Yu.B. Farforovskaya, An estimate of the nearness of the spectral decompositions of self-adjoint operators in the Kantorovic-RubinÜtein metric (in Russian), Vestnik Leningrad. Univ. 4 (1967), 155 – 156.
[8] Yu.B. Farforovskaya, An estimate of the norm kf (B) − f (A)k for selfadjoint operators A and B (in Russian), Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 56 (1976), 143 – 162.
[9] Yu.B. Farforovskaya, L. Nikolskaya, Modulus of continuity of operator functions, Algebra i Analiz 20 (3) (2008), 224 – 242; translation in St. Petersburg Math. J. 20 (3) (2009) 3, 493 – 506.
[10] J.I. Fujii, Y. Seo, On parametrized operator means dominated by power ones, Sci. Math. 1 (1998), 301 – 306.
[11] T. Furuta, Precise lower bound of f (A) − f (B) for A > B > 0 and non-constant operator monotone function f on [0, ∞), J. Math. Inequal. 9 (1) (2015), 47 – 52.
[12] E. Heinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann. (in German) 123 (1951), 415 – 438.
[13] T. Kato, Continuity of the map S → |S| for linear operators, Proc. Japan Acad. 49 (1973), 143 – 162.
[14] K. Löwner, Über monotone MatrixFunktionen, Math. Z. (in German) 38 (1934) 177 – 216.