Dynamics of products of nonnegative matrices

Main Article Content

S. Jayaraman
Y.K. Prajapaty
S. Sridharan


The aim of this manuscript is to understand the dynamics of products of nonnegative matrices. We extend a well known consequence of the Perron-Frobenius theorem on the periodic points of a nonnegative matrix to products of finitely many nonnegative matrices associated to a word and later to products of nonnegative matrices associated to a word, possibly of infinite length.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
Jayaraman, S., Prajapaty, Y., & Sridharan, S. (2022). Dynamics of products of nonnegative matrices. Extracta Mathematicae, 37(2), 223-242. https://doi.org/10.17398/2605-5686.37.2.223
Dynamical Systems


[1] M. Akian, S. Gaubert, B. Lemmens, R.D. Nussbaum, Iteration of order preserving subhomogeneous maps on a cone, Math. Proc. Cambridge Philos. Soc. 140 (2006), 157 – 176.
[2] M. Akian, S. Gaubert, B. Lemmens, Stability and convergence in discrete convex monotone dynamical systems, J. Fixed Point Theory Appl. 9 (2011), 295 – 325.
[3] J. Bernik, R. Drnovsek, T. Kosir, T. Laffey, G. MacDonald, R. Meshulam, M. Omladic, H. Radjavi, Common fixed points and common eigenvectors for sets of matrices, Linear Multilinear Algebra 53 (2005), 137 – 146.
[4] M.P. Drazin, J.W. Dungey, K.W. Grunberg, Some theorems on commutative matrices, J. London Math. Soc. 26 (1951), 221 – 228.
[5] R.A. Horn, C.R. Johnson, “ Matrix Analysis ”, Second edition, Cambridge University Press, Cambridge, 2013.
[6] B.P. Kitchens, “ Symbolic Dynamics: One-sided, Two-sided and Countable State Markov Shifts ”, Universitext, Springer-Verlag, Berlin, 1998.
[7] B. Lemmens, Nonlinear Perron-Frobenius theory and dynamics of cone maps, in “ Positive Systems ”, Lect. Notes Control Inf. Sci., 341, Springer, Berlin, 2006, 399 – 406.
[8] B. Lemmens, R.D. Nussbaum, “ Nonlinear Perron-Frobenius Theory ”, Cambridge Tracts in Mathematics, 189, Cambridge University Press, Cambridge, 2012.
[9] R.D. Nussbaum, S.M. Verduyn Lunel, Generalizations of the Perron-Frobenius theorem for nonlinear maps, Mem. Amer. Math. Soc. 138 (1999), no. 659, viii+98.
[10] D. Shemesh, Common eigenvectors of two matrices, Linear Algebra Appl. 62 (1984), 11 – 18.
[11] X. Wang, Z. Cheng, Infinite products of uniformly paracontracting matrices, Linear Multilinear Algebra 64 (2016), 856 – 862.
[12] X. Zhan, “ Matrix Theory ”, Graduate Studies in Mathematics, 147, American Mathematical Society, Providence, RI, 2013.