Rosenthal L∞-theorem revisited

Main Article Content

L. Drewnowski

Abstract

A remarkable Rosenthal L-theorem is extended to operators T : L(Γ, E) → F , where Γ is an infinite set, E a locally bounded (for instance, normed or p-normed) space, and F any topological vector space.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Drewnowski, L. (2021). Rosenthal L∞-theorem revisited. Extracta Mathematicae, 36(2), 147-155. https://doi.org/10.17398/2605-5686.36.2.147
Section
Banach Space Theory

References

[1] S.A. Argyros, J.M.F. Castillo, A.S. Granero, M. Jimenez-Sevilla, J.P. Moreno, Complementation and embeddings of c0 (I) in Banach spaces, Proc. London Math. Soc. 85 (2002), 742 – 768.
[2] C. Constantinescu, “ Spaces of Measures ”, De Gruyter Studies in Mathematics 4, Walter de Gruyter & Co., Berlin, 1984.
[3] L. Drewnowski, Un théorème sur les opérateurs de L∞(Γ), C.R. Acad. Sci. Paris Sér. A 281 (1975), 967 – 969.
[4] L. Drewnowski, An extension of a theorem of Rosenthal on operators acting from L∞(Γ), Studia Math. 57 (1976), 209 – 215.
[5] L. Drewnowski, Generalized limited sets with applications to spaces of type L∞(X) and c0 (X), European J. Math. (to appear).
[6] L. Drewnowski, I. Labuda, Copies of c0 and L∞ in topological Riesz spaces, Trans. Amer. Math. Soc. 350 (1998), 3555 – 3570.
[7] L. Drewnowski, I. Labuda, Topological vector spaces of Bochner measurable functions, Illinois J. Math. 46 (2002), 287 – 318.
[8] N.J. Kalton, Exhaustive operators and vector measures, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), 291 – 300.
[9] N.J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267 – 278.
[10] N.J. Kalton, N.T. Peck, J.W. Roberts, “ An F-space sampler ”, London Mathematical Society Lecture Note Series, 89, Cambridge University Press, Cambridge, 1984.
[11] J. Kupka, A short proof and a generalization of a measure theoretic disjointization lemma, Proc. Amer. Math. Soc. 45 (1974), 70 – 72.
[12] I. Labuda, Sur les mesures exhaustives et certaines classes d’espaces vectoriels topologiques considérés par W. Orlicz et L. Schwartz, C. R. Acad. Sci. Paris Sér. A 280 (1975), 997 – 999.
[13] I. Labuda, Exhaustive measures in arbitrary topological vector spaces, Studia Math. 58 (1976), 239 – 248.
[14] A. Avilés, F. Cabello Sánchez, J.M.F. Castillo, M. González, Y. Moreno, “ Separably Injective Banach Spaces ”, Lecture Notes in Mathematics, 2132, Springer, 2016.
[15] Z. Lipecki, The variation of an additive function on a Boolean algebra, Publ. Math. Debrecen 63 (2003), 445 – 459.
[16] S. Rolewicz, “ Metric Linear Spaces ”, Second edition, PWNùPolish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984.
[17] H.P. Rosenthal, On complemented and quasi-complemented subspaces of quotients of C(S) for stonian S, Proc. Nat. Acad. Sci. U.S.A. 60 (1968), 1165 – 1169.
[18] H.P. Rosenthal, On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13 – 36. (Correction, ibid., 311 – 313.)