Stability of some essential B-spectra of pencil operators and application

Main Article Content

A. Ben Ali
M. Boudhief
N. Moalla

Abstract

In this paper, we give some results on the essential B-spectra of a linear operator pencil, which are used to determine the essential B-spectra of an integro-differential operator with abstract boundary conditions in the Banach space Lp([−a, a] × [−1, 1]), p ≥ 1 and a > 0.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Ben Ali, A., Boudhief, M., & Moalla, N. (2021). Stability of some essential B-spectra of pencil operators and application. Extracta Mathematicae, 36(1), 63-80. https://doi.org/10.17398/2605-5686.36.1.63
Section
Operator Theory

References

[1] P. Aiena, “ Fredholm and Local Spectral Theory II, with Applications to Weyl-type theorems ”, Lecture Notes in Mathematics, 2235, Springer, Cham, 2018.
[2] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999), 244 – 249.
[3] M. Berkani, Restriction of an operator to the range of its powers, Studia Math. 140 (2000), 163 – 175.
[4] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596 – 603.
[5] M. Berkani, On the B-Fredholm Alternative, Mediterr. J. Math. 10 (2013), 1487 – 1496.
[6] M. Berkani, M. Boudhief, N. Moalla, Stability of essential B-spectra of unbounded linear operators and applications, to appear in Afrika Matematika.
[7] M. Berkani, M. Boudhief, N. Moalla, A characterization of unbounded generalized meromorphic operators, to appear in Filomat.
[8] M. Benharrat, B. Messirdi, Relationship between a variant of essential spectrum and the Kato essential, Gen. Math. 20 (4) (2012), 71 – 88.
[9] M. Benharrat, B. Messirdi, Relationship between the essential quasi-Fredholm spectrum and the closed-range spectrum, An. Univ. Oradea Fasc. Mat. 21 (1) (2014), 5 – 12.
[10] M. Berkani, N. Moalla, B-Fredholm properties of closed invertible operators, Mediterr. J. Math. 13 (2016), 4175 – 4185.
[11] M. Barkani, M. Sarih, On semi B-Fredholm operators, Glasg. Math. J. 43 (2001), 457 – 465.
[12] A. Gherbi, B. Messirdi, M. Amouch, A spectral analysis of linear operator pencils on Banach spaces with application to quotient of bounded operators, International Journal of Analysis and Applications 7 (2) (2015), 104 – 128.
[13] A. Jeribi, “ Spectral Theory and Applications of Linear Operators and Block Operator Matrices ”, Springer, Cham, 2015.
[14] A. Jeribi, “ Linear Operators and their Essential Pseudospectra ”, Apple Academic Press, Oakville, ON, 2018.
[15] A. Jeribi, N. Moalla, S. Yengui, S-essential spectra and application to an example of transport operators, Math. Methods Appl. Sci. 37 (2014), 2341 – 2353.
[16] Q. Jiang, Q. Zeng, H. Zhong, Spectra originating from semi-B-Fredholm theory and commuting perturbations, Studia Math. 219 (2013), 1 – 18.
[17] J.P. Labrousse, Les opérateurs quasi-Fredholm: une généralisation des opérateurs semi-Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), 161 – 258.
[18] J.T. Marti, Operational calculus for two commuting closed operators, Comment. Math. Helv. 43 (1968), 87 – 97.
[19] M. Schechter, “ Principles of Functional Analysis ”, Academic Press, New York-London, 1971.
[20] P. Saphar, Contribution à l’étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363 – 384.