Multifractal formalism of an inhomogeneous multinomial measure with various parameters

Main Article Content

A. Samti

Abstract

In this paper, we study the refined multifractal formalism in a product symbolic space and we estimate the spectrum of a class of inhomogeneous multinomial measures constructed on the product symbolic space.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Samti, A. (2020). Multifractal formalism of an inhomogeneous multinomial measure with various parameters. Extracta Mathematicae, 35(2), 229-252. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.35.2.229
Section
Real Functions and Measure Theory

References

[1] N. Attia, B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc. 34 (2019), 213 – 230.
[2] N. Attia, B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal. (2019) https://doi.org/10.1007/s12220-019-00302-3.
[3] F. Ben Nasr, I. Bhouri, Spectre multifractal de mesures boréliennes sur Rd , C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 253 – 256.
[4] F. Ben Nasr, I. Bhouri, Y. Heurteaux, The validity of the multifractal formalism: results and examples, Adv. Math. 165 (2002), 264 – 284.
[5] F. Ben Nasr, J. Peyrière. Revisiting the multifractal analysis of measures, Rev. Mat. Iberoam. 29 (1) (2013), 315 – 328.
[6] P. Billingsley, “Ergodic Theory and Information”, John Wiley & Sons, Inc., New York-London-Sydney, 1965.
[7] K. Falconer, “Fractal Geometry. Mathematical Foundations and Applications”, John Wiley & Sons, Ltd., Chichester, 1990.
[8] U. Frisch, G. Parisi, Fully developped turbulence and intermittency in turbulence, and predictability in geophysical fluid dynamics and climate dynamics, in “ International School of Physics Enrico Fermi, Course 88 ”, (edited by M. Ghil), North Holland, 1985, 84 – 88.
[9] T.C. Halsey, M.H. Jensen, L.P. Kadanoff, I. Procaccia, B.J. Shraiman, Fractal measures and their singularities: the characterization of strange sets, Phys. Rev. A (3) 33 (1986), 1141 – 1151.
[10] H.G. Hentschel, I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Phys. D 8 (1983), 435 – 444.
[11] B.B. Mandelbrot, Multifractal measures, especially for geophysicist, Annual Reviews of Materials Sciences. 19 (1989), 514 – 516.
[12] B.B. Mandelbrot, A class of multifractal measures with negative (latent) value for the dimension f (α), in “ Fractals: Physical Origin and Properties ”, in Proceedings of the Special Seminar on Fractals, Erice, 1988 (edited by K. Ford and D. Campbell), American Institute of Physics, 1990, 3 – 29.
[13] L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), 82 – 196.
[14] S. Shen, Multifractal analysis of some inhomogeneous multinomial measures with distinct analytic Olsen’s b and B functions, J. Stat. Phys. 159 (5) (2015), 1216 – 1235.
[15] C. Tricot, Jr., Rarefaction indices, Mathematika 27 (1980), 46 – 57.
[16] S.J. Taylor, C. Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679 – 699.
[17] M. Wu, The singularity spectrum f (α) of some Moran fractals, Monatsh. Math. 144 (2005), 141 – 55.
[18] M. Wu, J. Xiao, The singularity spectrum of some non-regularity Moran fractals, Chaos Solitons Fractals 44 (2011), 548 – 557.
[19] J. Xiao, M. Wu, The multifractal dimension functions of homogeneous Moran measure, Fractals 16 (2008), 175 – 185.