Around some extensions of Casas-Alvero conjecture for non-polynomial functions

Main Article Content

A. Cima
A. Gasull
F. Mañosas

Abstract

We show that two natural extensions of the real Casas-Alvero conjecture in the non-polynomial setting do not hold.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Cima, A., Gasull, A., & MañosasF. (2020). Around some extensions of Casas-Alvero conjecture for non-polynomial functions. Extracta Mathematicae, 35(2), 221-228. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.35.2.221
Section
Real Functions and Measure Theory

Funding data

References

[1] E. Casas-Alvero, Higher order polar germs, J. Algebra 240 (2001), 326 – 337.
[2] Interview to E. Casas-Alvero in Spanish. https://www.gaussianos.com/la-conjetura-de-casas-alvero-contada-por-eduardo-casas-alvero/.
[3] W. Castryck, R. Laterveer, M. Ounaı̈es, Constraints on counterexamples to the Casas-Alvero conjecture and a verification in degree 12, Math. Comp. 83 (2014), 3017 – 3037.
[4] M. Chellali, On the number of real polynomials of the Casas-Alvero type, J. of Taibah Univ. for Science 9 (2015), 351 – 356.
[5] G.M. Dı́az-Toca, L. González-Vega, On analyzing a conjecture about univariate polynomials and their roots by using Maple in “ A Maple conference 2006 ” (Proc. of the conference; Waterloo, Ontario, Canada, July 23–26, 2006; Waterloo: Maplesoft), 2006, 81 – 98.
[6] J. Draisma, J.P. de Jong, On the Casas-Alvero conjecture, Eur. Math. Soc. Newsl. 80 (2011), 29 – 33.
[7] H.-C. Graf von Bothmer, O. Labs, J. Schicho, C. van de Woestijne, The Casas-Alvero conjecture for infinitely many degrees, J. Algebra 316 (2007), 224 – 230.
[8] S. Yakubovich, Polynomial problems of the Casas-Alvero type, J. Class. Anal. 4 (2014), 97 – 120.