Invariant subspace problem and compact operators on non-Archimedean Banach spaces

Main Article Content

M. Babahmed
A. El asri

Abstract

In this paper, the invariant Subspace Problem is studied for the class of non-Archimedean compact operators on an infinite-dimensional Banach space E over a nontrivial complete non-Archimedean valued field K. Our first main result (Theorem 9) asserts that if K is locally compact, then each compact operator on E possessing a quasi null vector admits a nontrivial hyperinvariant closed subspace. In the second one (Theorem 17), we prove that each bounded operator on E which contains a cyclic quasi null vector can be written as the sum of a triangular operator and a compact shift operator, each one of them possesses a nontrivial invariant closed subspace. Finally, we conclude that if K is algebraically closed, then every compact operator on E either has a nontrivial invariant closed subspace or is a sum of upper triangular operator and shift operator, each of them is compact and has a nontrivial invariant closed subspace.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Babahmed, M., & El asri, A. (2020). Invariant subspace problem and compact operators on non-Archimedean Banach spaces. Extracta Mathematicae, 35(2), 205-219. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.35.2.205
Section
Banach Spaces and Operator Theory

References

[1] Y.A. Abramovich, C.D. Aliprantis, O. Burkinshaw, Invariant sub- spaces of operators on lp -spaces, J. Funct. Anal. 115 (2) (1993), 418 – 424.
[2] Y. Amice, Interpolation p-adique, Bull. Soc. Math. France 92 (1964), 117 – 180.
[3] N. Aronszajn, K.T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. (2) (60) (1954), 345 – 350.
[4] W.B. Arveson, J. Feldman, A note on invariant subspace, Michigan Math. J. 15 (1968), 61 – 64.
[5] A.R. Bernstein, A. Robinson, Solution of an invariant subspace problem of K.T. Smith and P.R. Halmos, Pacific J. Math. 16 (1966), 421 – 431.
[6] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239 – 255.
[7] R.L. Ellis, The Fredholm alternative for non-Archimedean fields, J. London Math. Soc. 42 (1967), 701 – 705.
[8] L. Gruson, Théorie de Fredholm p-adique, Bull. Soc. Math. France 94 (1966), 67 – 95.
[9] D.W. Hadwin, E.A. Nordgren, H. Radjavi, P. Rosenthal, An operator not satisfying Lomonosov’s hypothesis, J. Functional Analysis 38 (1980), 410 – 115.
[10] P.R. Halmos, Invariant subspaces of polynomially compact operators, Pacific J. Math. 16 (1966), 433 – 437.
[11] P.R. Halmos, Quasitriangular operators, Acta Sci. Math. (Szeged) 29 (1968), 283 – 293.
[12] V. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator (Russian), Funkcional. Anal. i Priloz̆en 7 (1973), 55 – 56.
[13] A.J. Michael, Hilden’s simple proof of Lomonosov’s invariant subspace theorem, Adv. Math. 25 (1977), 56 – 58.
[14] C. Pearcy, N. Salinas, An invariant-subspace theorem, Michigan Math. J. 20 (1973), 21 – 31.
[15] C. Perez-Garcia, W.H. Schikhof, “ Locally Convex Spaces over Non-Archimedean Valued Fields ”, Cambridge Studies in Advanced Mathematics 119, Cambridge University Press, Cambridge, 2010.
[16] H. Radjavi, P. Rosenthal, “ Invariant Subspaces ”, Springer-Verlag, New York-Heidelberg, 1973.
[17] W.H. Schikhof, On p-adic compact operators, Report 8911, Department of mathematics, Catholic University, Nijmegen, The Netherlands, 1989, 1 – 28.
[18] P. Schneider, “ Nonarchimedean Functional Analysis ”, Springer-Verlag, Berlin, 2002.
[19] J.P. Serre, Endomorphismes complètement continus des espaces de Banach p-adiques, Inst. Hautes Études Sci. Publ. Math. 12 (1962), 69 – 85.
[20] W. Śliwa, The invariant subspace problem for non-Archimedean Banach spaces, Canad. Math. Bull. 51 (2008), 604 – 617.
[21] A.C.M. van Rooij, “ Non-Archimedean Functional Analysis ”, Monographs and Textbooks in Pure and Applied Math. 51, Marcel Dekker, Inc., New York, 1978.