Generalized representations of 3-Hom-Lie algebras

Main Article Content

S. Mabrouk
A. Makhlouf
S. Massoud

Abstract

The propose of this paper is to extend generalized representations of 3-Lie algebras to Hom-type algebras. We introduce the concept of generalized representation of multiplicative 3-Hom-Lie algebras, develop the corresponding cohomology theory and study semi-direct products. We provide a key construction, various examples and computation of 2-cocycles of the new cohomology. Also, we give a connection between a split abelian extension of a 3-Hom-Lie algebra and a generalized semidirect product 3-Hom-Lie algebra.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Mabrouk, S., Makhlouf, A., & Massoud, S. (2020). Generalized representations of 3-Hom-Lie algebras. Extracta Mathematicae, 35(1), 99-126. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.35.1.99
Section
Non-associative Rings and Algebras

References

[1] F. Ammar, S. Mabrouk, A. Makhlouf, Representations and cohomology of n-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Phys. 61 (10) (2011), 1898 – 1913.
[2] J. Arnlind, A. Makhlouf, S. Silvestrov, Construction of n-Lie algebras and n-ary Hom-Nambu-Lie algebras, J. Math. Phys. 52 (12) (2011), 123502, 13pp.
[3] J. Arnlind, A. Kitouni, A. Makhlouf, S. Silvestrov, Structure and cohomology of 3-Lie algebras induced by Lie algebras, in “ Algebra, Geometry and Mathematical Physics ”, Springer Proc. Math. Stat. 85, Springer, Heidelberg, 2014, 123 – 144.
[4] H. Ataguema, A. Makhlouf, S. Silvestrov, Generalization of n-ary Nambu algebras and beyond, J. Math. Phys. 50 (8) (2009), 083501, 15 pp.
[5] J. Bagger, N. Lambert, Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D 77 (6) (2008), 065008, 6 pp.
[6] J. Bagger, N. Lambert, Three-algebras and N = 6 Chern-Simons gauge theories, Phys. Rev. D 79 (2) (2009), 025002, 8 pp.
[7] R. Bai, C. Bai, J. Wang, Realizations of 3-Lie algebras, J. Math. Phys. 51 (6) (2010), 063505, 12 pp.
[8] R. Bai, G. Song, Y. Zhang, On classification of n-Lie algebras, Front. Math. China 6 (4) (2011), 581 – 606.
[9] A. Basu, J.A. Harvey, The M2-M5 brane system and a generalized Nahm’s equation, Nuclear Phys. B 713 (1-3) (2005), 136 – 150.
[10] L. Cai, Y. Sheng, Hom-big brackets: theory and applications, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper No. 014, 18 pp.
[11] Y. Daletskii, L. Takhtajan, Leibniz and Lie algebra structures for Nambu algebra, Lett. Math. Phys. 39 (2) (1997), 127 – 141.
[12] J.A. de Azcárraga, J.M. Izquierdo, n-ary algebras: a review with applications, J. Phys. A: Math. Theor. 43 (2010), 293001.
[13] J.A. de Azcárraga, J.M. Izquierdo, Cohomology of Filippov algebras and an analogue of Whitehead’s lemma, J. Phys. Conf. Ser. 175 (2009), 012001.
[14] J. Figueroa-O’Farrill, Deformations of 3-algebras, J. Math. Phys. 50 (11) (2009), 113514, 27 pp.
[15] V.T. Filippov, n-Lie algebras (Russian), Sibirsk. Mat. Zh. 26 (6) (1985) 126 – 140.
[16] Y. Frégier, Non-abelian cohomology of extensions of Lie algebras as Deligne groupoid, J. Algebra 398 (2014), 243 – 257.
[17] P. Gautheron, Some remarks concerning Nambu mechanics, Lett. Math. Phys. 37 (1) (1996), 103 – 116.
[18] J. Hartwig, D. Larsson, S. Silvestrov, Deformations of Lie algebras using σ-derivations, J. Algebra 295 (2) (2006), 314 – 361.
[19] J. Liu, A. Makhlouf, Y. Sheng, A new approach to representations of 3-Lie algebras and abelian extensions, Algebr. Represent. Theory 20 (6) (2017), 1415 – 1431.
[20] P. Ho, R. Hou, Y. Matsuo, Lie 3-algebra and multiple M2-branes, J. High Energy Phys. 2008 (6) (2008), 020, 30 pp.
[21] Sh.M. Kasymov, On a theory of n-Lie algebras (Russian), Algebra i Logika 26 (3) (1987), 277 – 297.
[22] A. Makhlouf, On Deformations of n-Lie Algebras, in “ Non-Associative and Non-Commutative Algebra and Operator Theory ”, Springer Proc. Math. Stat., 160, Springer, Cham, 2016, 55 – 81.
[23] Y. Nambu, Generalized Hamiltonian dynamics, Phys. Rev. D 7 (1973), 2405 – 2412.
[24] A. Nijenhuis, R. Richardson, Cohomology and Deformations in Graded Lie Algebras, Bull. Amer. Math. Soc. 72 (1966), 1 – 29.
[25] Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theory 15 (6) (2012), 1081 – 1098.
[26] L. Song, A. Makhlouf, R. Tang, On non-abelian extensions of 3-Lie algebras, Commun. Theor. Phys. 69 (4) (2018), 347 – 356.
[27] G. Papadopoulos, M2-branes, 3-Lie algebras and Plücker relations, J. High Energy Phys. 2008 (5), 054, 9 pp.
[28] M. Rotkiewicz, Cohomology ring of n-Lie algebras, Extracta Math. 20 (3) (2005), 219 – 232.
[29] L. Takhtajan, On foundation of the generalized Nambu mechanics, Comm. Math. Phys. 160 (2) (1994), 295 – 315.
[30] L. Takhtajan, A higher order analog of Chevalley-Eilenberg complex and deformation theory of n-algebras, St. Petersburg Math. J. 6 (2) (1995), 429 – 438.
[31] J. Zhao, L. Chen, n-ary Hom-Nambu algebras, arXiv:1505.08168v1, 2015.