Identities in the spirit of Euler

Main Article Content

A. Sofo

Abstract

In this paper we develop new identities in the spirit of Euler. We shall investigate and report on new Euler identities of weight p + 2, for p an odd integer, but with a non unitary argument of the harmonic numbers. Some examples of these Euler identities will be given in terms of Riemann zeta values, Dirichlet values and other special functions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Sofo, A. (2020). Identities in the spirit of Euler. Extracta Mathematicae, 35(1), 21-34. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.35.1.21
Section
Function Theory

References

[1] Borwein, D.; Borwein, J. M..; Girgensohn, R. Explicit evaluation of Euler sums. Proc. Edinburgh Math. Soc. (2) 38 (1995), no. 2, 277–294.
[2] Bailey, D. H. Borwein, J. M. Computation and structure of character polylogarithms with applications to character Mordell-Tornheim-Witten sums. Math. Comp. 85 (2016), no. 297, 295–324.
[3] Choi, Junesang Log-sine and log-cosine integrals. Honam Math. J. 35 (2013), no. 2, 137–146.
[4] Devoto, A. Duke, D. W. Table of integrals and formulae for Feynman diagram calculations. Riv. Nuovo Cimento (3) 7 (1984), no. 6, 1–39.
[5] Euler, L. Meditationes circa singulare serierum genus, Novi Comm. Acad. Sci. Petropol. 20 (1776), 140-186; reprinted in Opera Omnia, Ser. I, Vol. 15, B. G.Teubner, Berlin, 1927, pp. 217-267.
[6] Flajolet, P. Salvy, B. Euler sums and contour integral representations.
Experiment. Math. 7 (1998), no. 1, 15–35.
[7] Freitas, P. Integrals of polylogarithmic functions, recurrence relations, and associated Euler sums. Math. Comp. 74 (2005), no. 251, 1425–1440.
[8] Hoffman, M. E., Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290.
[9] Kölbig, K. S. Nielsen’s generalized polylogarithms. SIAM J. Math. Anal. 17 (1986), no. 5, 1232–1258.
[10] Lewin, R. Polylogarithms and Associated Functions. North Holland, New York, 1981.
[11] Markett, C. Triple sums and the Riemann zeta function. J. Number Theory 48 (1994), no. 2, 113–132.
[12] Sitaramachandra Rao, R. A formula of S. Ramanujan. J. Number Theory 25 (1987), no. 1, 1–19.
[13] Sofo, A. Polylogarithmic connections with Euler sums. Sarajevo J. Math. 12(24) (2016), no. 1, 17–32.
[14] Sofo, A. Integrals of logarithmic and hypergeometric functions. Commun. Math. 24 (2016), no. 1, 7–22.
[15] Sofo, A. and Cvijović, D. Extensions of Euler Harmonic Sums, Appl. Anal. Discrete Math. 6 (2012), 317–328.
[16] Sofo, A. Integrals of inverse trigonometric and polylogarithmic functions. Submitted, 2019.
[17] Sofo, A.; Srivastava, H. M. A family of shifted harmonic sums. Ramanujan J. 37 (2015), no. 1, 89–108.
[18] Sofo, A. New classes of harmonic number identities. J. Integer Seq. 15 (2012), no. 7, Article 12.7.4, 12 pp.
[19] Sofo, A. Families of Integrals of Polylogarithmic Functions, Special Functions and Applications. Editors Choi, J. and Shilin, I. Mathematics
(2019), 7, 143; doi:10.3390/math7020143, Published by MDPI AG, Basel, Switzerland.
[20] Xu, Ce. Yan, Yuhuan. Shi, Zhijuan. Euler sums and integrals of polylogarithm functions. J. Number Theory 165 (2016), 84–108.
[21] Zagier, D. Values of zeta functions and their applications, in First European Congress of Mathematicians, Vol II (Paris, 1992), Birkhauser, Boston, 1994, pp. 497-512.