Refinements of Kantorovich type, Schwarz and Berezin number inequalities

Main Article Content

M. Garayev
F. Bouzeffour
M. Gürdal
C.M. Yangöz

Abstract

In this article, we use Kantorovich and Kantorovich type inequalities in order to prove some new Berezin number inequalities. Also, by using a refinement of the classical Schwarz inequality, we prove Berezin number inequalities for powers of f (A), where A is self-adjoint operator on the Hardy space H 2(D) and f is a positive continuous function. Some related questions are also discussed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Garayev, M., Bouzeffour, F., Gürdal M., & Yangöz C. (2020). Refinements of Kantorovich type, Schwarz and Berezin number inequalities. Extracta Mathematicae, 35(1), 1-20. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.35.1.1
Section
Operator Theory

References

[1] T. Ando, C.-K. Li, R. Mathias, Geometric means, Linear Algebra Appl. 385 (2004), 305 – 334.
[2] L. Arambas̆ić, D. Bakić, M.S. Moslehian, A treatment of the Cauchy-Schwarz inequality in C ∗ -Modules, J. Math. Anal. Appl. 381 (2011), 546 – 556.
[3] N. Aronzajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337 – 404.
[4] M. Bakherad, Some Berezin number inequalities for operator matrices, Czechoslovak Math. J., 68 (4) (2018), 997 – 1009.
[5] M. Bakherad, M. Garayev, Berezin number inequalities for operators, Concr. Oper. 6 (1) (2019), 33 – 43.
[6] H. Başaran, M. Gürdal, A.N. Güncan, Some operator inequalities associated with Kantorovich and Hölder-McCarthy inequalities and their applications, Turkish J. Math. 43 (1) (2019), 523 – 532.
[7] F.A. Berezin, Covariant and contravariant symbols for operators, Math. USSR-Izv. 6 (1972), 1117 – 1151.
[8] F.A. Berezin, Quantization, Math. USSR-Izv. 8 (1974), 1109 – 1163.
[9] L.A. Coburn, Berezin transform and Weyl-type unitary operators on the Bergman space, Proc. Amer. Math. Soc. 140 (2012), 3445 – 3451.
[10] S.S. Dragomir, New inequalities of the Kantorovich type for bounded linear operators in Hilbert spaces, Linear Algebra Appl. 428 (11-12) (2008), 2750 – 2760.
[11] S.S. Dragomir, Improving Schwartz inequality in inner product spaces, Linear Multilinear Algebra 67 (2) (2019), 337 – 347.
[12] M. Enomoto, Commutative relations and related topics, Kyoto University, 1039 (1998), 135 – 140.
[13] T. Furuta, Operator inequalities associated with Hölder–McCarthy and Kantorovich inequalities, J. Inequal. Appl. 2 (2) (1998), 137 – 148.
[14] T. Furuta, “ Invitation to Linear Operators. From matrices to bounded linear operators on a Hilbert space ”, Taylor & Francis, London, 2001 (p. 266).
[15] T. Furuta, J. Mićić Hot, J.E. Pečarić, Y. Seo, Mond-Pecaric method in operator inequalities, in “ Inequalities for bounded selfadjoint operators on a Hilbert space ”, Monographs in Inequalities, Vol. 1, Element, Zagreb, 2005.
[16] M.T. Garayev, M. Gürdal, M.B. Huban, Reproducing kernels, Engliš algebras and some applications, Studia Math. 232 (2) (2016), 113 – 141.
[17] M.T. Garayev, M. Gürdal, A. Okudan, Hardy-Hilbert’s inequality and power inequalities for Berezin numbers of operators, Math. Inequal. Appl. 19 (3) (2016), 883 – 891.
[18] M.T. Garayev, M. Gürdal, S. Saltan, Hardy type inequality for reproducing kernel Hilbert space operators and related problems, Positivity 21 (4) (2017), 1615 – 1623.
[19] M.T. Garayev, Berezin symbols, Hölder-McCarthy and Young inequalities and their applications, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb. 43 (2) (2017), 287 – ,295.
[20] W. Greub, W. Rheinboldt, On a generalization of an inequality of L.V. Kantorovich, Proc. Amer. Math. Soc. 10 (1959), 407 – 415.
[21] M. Gürdal, M.T. Garayev, S. Saltan, U. Yamancı, On some numerical characteristics of operators, Arab J. Math. Sci. 21 (1) (2015), 118 – 126.
[22] P. Halmos, “ A Hilbert Space Problem Book ”, Graduate Texts in Mathematics, Vol. 19, Springer-Verlag, New York-Berlin, 1982.
[23] K. Hoffman, “ Banach Spaces of Analytic Functions ”, Dover Publications, Mineola, New York, 2007.
[24] L.V. Kantorović, Functional analysis and applied mathematics, Uspehi Matem. Nauk (N.S.) 3 (6(28)) (1948), 89 – 185 (in Russian).
[25] M.T. Karaev, Reproducing kernels and Berezin symbols techniques in various questions of operator theory, Complex Anal. Oper. Theory 7 (4) (2013), 983 – 1018.
[26] M.T. Karaev, S. Saltan, Some results on Berezin symbols, Complex Var. Theory Appl. 50 (2005), 185 – 193.
[27] M. Kian, Hardy-Hilbert type inequalities for Hilbert space operators, Ann. Funct. Anal. 3 (2) (2012), 129 – 135.
[28] S. Kiliç, The Berezin symbol and multipliers of functional Hilbert spaces, Proc. Amer. Math. Soc. 123 (1995), 3687 – 3691.
[29] E.C. Lance, “ Hilbert C ∗-modules ”, London Math. Soc. Lecture Notes Series, 210, Cambridge University Press, Cambridge, 1995.
[30] S. Liu, H. Neudecker, Several matrix Kantorovich-type inequalities, J. Math. Anal. Appl. 197 (1996), 23 – 26.
[31] V.M. Manuilov, E.V. Troitsky, “ Hilbert C ∗-modules ”, Translations of Mathematical Monographs, 226, American Mathematical Society, Providence RI, , 2005.
[32] A.W. Marshall, I. Olkin, Matrix versions of the Cauchy and Kantorovich inequalities, Aequationes Math. 40 (1) (1990), 89 – 93.
[33] D.S. Mitrinovic, J.E. Pečarić, A.M. Fink, “Classical and new inequalities in analysis”, Kluwer Academic Publishers Group, Dordrecht, 1993.
[34] M.S. Moslehian, Recent developments of the operator Kantorovich inequality, Expo. Math. 30 (2012), 376 – 388.
[35] R. Nakamoto, M. Nakamura, Operator mean and Kantorovich inequality, Math. Japon. 44 (3) (1996), 495 – 498.
[36] M. Niezgoda, Kantorovich type inequalities for ordered linear spaces, Electron. J. Linear Algebra 20 (2010), 103 – 114.
[37] C. Pearcy, An elementary proof of the power inequality for the numerical radius, Michigan Math. J. 13 (1966), 289 – 291.
[38] G. Strang, On the Kantorovich inequality, Proc. Amer. Math. Soc. 11 (1960), 468.
[39] U. Yamancı, M.T. Garayev, C. Çelik, Hardy-Hilbert type inequality in reproducing kernel Hilbert space: its applications and related results, Linear Multilinear Algebra 67 (4) (2019), 830 – 842.
[40] U. Yamancı, M. Gürdal, M.T. Garayev, Berezin number inequality for convex function in reproducing kernel Hilbert space, Filomat 31 (18) (2017), 5711 – 5717.
[41] T. Yamazaki, An extension of Kantorovich inequality to n-operators via the geometric mean by Ando-Li-Mathias, Linear Algebra Appl. 416 (2-3) (2006), 688 – ,695.
[42] T. Yamazaki, M. Yanagida, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math. 2 (1) (1999), 37 – 50.
[43] H. Umegaki, Conditional expectation in an operator algebra, Tohoku Math. J. (2) 6 (1954), 177 – 181.
[44] F. Zhang, Equivalence of the Wielandt inequality and the Kantorovich inequality, Linear Multilinear Algebra 48 (3) (2001), 275 – 279.