A Symmetrical Property of the Spectral Trace in Banach Algebras

Main Article Content

Abdelaziz Maouche


Our aim in this paper is to extend a symmetrical property of the trace by M. Kennedy and H. Radjavi for bounded operators on a Banach space to the more general situation of Banach algebras. The main ingredients are Vesentini’s result on subharmonicity of the spectral radius and the new spectral rank and trace defined on the socle of a Banach algebra by B. Aupetit and H. du T. Mouton.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
Maouche, A. (2017). A Symmetrical Property of the Spectral Trace in Banach Algebras. Extracta Mathematicae, 32(2), 163-172. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.32.2.163
Banach Spaces and Operator Theory


[1] B. Aupetit, “ A Primer on Spectral Theory ”, Universitext, Springer-Verlag, New York, 1991.
[2] B. Aupetit, Trace and spectrum preserving linear mappings in Jordan-Banach algebras, Monatsh. Math. 125 (1998), 179 – 187.
[3] B. Aupetit, H. du T. Mouton, Trace and Determinant in Banach algebras, Studia Math. 121 (2) (1996), 115 – 136.
[4] G. Braatvedt, R. Brits, F. Schultz, Rank, trace and determinant in Banach algebras: generalized Frobenius and Sylvester theorems, Studia Math. 229 (2015), 173 – 180.
[5] M. Kennedy, H. Radjavi, Spectral conditions on Lie and Jordan algebras of compact operators, J. Funct. Anal. 256 (2009), 3143 – 3157.