On the Moduli Space of Donaldson-Thomas Instantons

Main Article Content

Yuuji Tanaka

Abstract

In alignment with a programme by Donaldson and Thomas, Thomas [48] constructed a deformation invariant for smooth projective Calabi-Yau threefolds, which is now called the Donaldson-Thomas invariant, from the moduli space of (semi-)stable sheaves by using algebraic geometry techniques. In the same paper [48], Thomas noted that certain perturbed Hermitian-Einstein equations might possibly produce an analytic theory of the invariant. This article sets up the equations on symplectic 6-manifolds, and gives the local model and structures of the moduli space coming from the equations. We then describe a Hitchin-Kobayashi style correspondence for the equations on compact Kähler threefolds, which turns out to be a special case of results by Álvarez-Cónsul and Garcı́a-Prada [1].

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Tanaka, Y. (2016). On the Moduli Space of Donaldson-Thomas Instantons. Extracta Mathematicae, 31(1), 89-107. Retrieved from https://publicaciones.unex.es/index.php/EM/article/view/2605-5686.31.1.89
Section
Differential Geometry

References

[1] L. Álvarez-Cónsul, O. Garcı́a-Prada, Hitchin-Kobayashi correspondence, quivers and vortices, Comm. Math. Phys. 238 (2003), 1 – 33.
[2] M.F. Atiyah, N.J. Hitchin, I.M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425 – 461.
[3] L. Baulieu, H. Kanno, I.M. Singer, Special quantum field theories in eight and other dimensions, Comm. Math. Phys. 194 (1998), 149 – 175.
[4] O. Ben-Bassat, C. Brav, V. Bussi, D. Joyce, A ’Darboux Theorem’ for shifted symplectic structures on derived Artin stacks, with applications, Geom. Topol. 19 (2015), 1287 – 1359.
[5] D. Borisov, D. Joyce, Virtual fundamental classes for moduli spaces of sheaves on Calabi-Yau four-folds, arXiv:1504.00690.
[6] S.B. Bradlow, O. Garcı́a-Prada, I. Mundet i Riera, Relative Hitchin-Kobayashi correspondences for principal pairs, Q. J. Math. 54 (2003), 171 – 208.
[7] C. Brav, V. Bussi, D. Dupont, D. Joyce, B. Szendroi, Symmetries and stabilization for sheaves of vanishing cycles, With an appendix by Jörg Schürmann, J. Singul. 11 (2015), 85 – 151.
[8] C. Brav, V. Bussi, D. Joyce, A Darboux theorem for derived schemes with shifted symplectic structure, arXiv:1305.6302.
[9] V. Bussi, D. Joyce, S. Meinhardt, On motivic vanishing cycles of critical loci, arXiv:1305.6428.
[10] Y. Cao, Donaldson-Thomas theory for Calabi-Yau four-folds, arXiv:1309.4230.
[11] Y. Cao, N.C. Leung, Donaldson-Thomas theory for Calabi-Yau fourfolds, arXiv:1407.7659.
[12] Y. Cao, N.C. Leung, Orientability for gauge theories on Calabi-Yau manifolds, arXiv:1502.01141.
[13] Y. Cao, N.C. Leung, Relative Donaldson-Thomas theory for Calabi-Yau four-folds, arXiv:1502.04417.
[14] Y. Cao, N.C. Leung, Remarks on mirror symmetry of Donaldson-Thomas theory for Calabi-Yau 4-folds, arXiv:1506.04218.
[15] R. Dijkgraaf, S. Gukov, A. Neitzke, C. Vafa, Topological M-theory as unification of form theories of gravity, Adv. Theor. Math. Phys. 9 (2005), 603 – 665.
[16] S.K. Donaldson, An application of gauge theory to four dimensional topology, J. Differential Geom. 18 (1983), 279 – 315.
[17] S.K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985), 1 – 26.
[18] S.K. Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987), 231 – 247.
[19] S.K. Donaldson, P.B. Kronheimer, “ The Geometry of Four-Manifolds ”, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1990.
[20] S. Donaldson, E. Segal, Gauge theory in higher dimensions, II, in “ Surveys in Differential Geometry, Volume XVI ”, Int. Press, Somerville, MA, 2011, 1 – 41.
[21] S.K. Donaldson, R.P. Thomas, Gauge theory in higher dimensions, in “The Geometric Universe”, Oxford University Press, Oxford, 1998, 31 – 47.
[22] D.S. Freed, K.K. Uhlenbeck, “ Instantons and Four-Manifolds ”, Second edition, Springer-Verlag, New York, 1991.
[23] P. Gilkey, “ Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem ”, Second edition, CRC Press, Boca Raton, FL, 1995.
[24] N. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59 – 126.
[25] M. Itoh, H. Nakajima, Yang-Mills connections and Einstein-Hermitian metrics, in “ Kähler Metric and Moduli Spaces ”, Academic Press, Boston, MA, 1990, 395 – 457.
[26] A. Iqbal, N. Nekrasov, A. Okounkov, C. Vafa, Quantum foam and topological strings, J. High Energy Phys. 4 (2008), 011.
[27] D. Joyce, A classical model for derived critical loci, J. Differential Geom. 101 (2015), 289 – 367.
[28] D. Joyce, Y. Song, “ A Theory of Generalized Donaldson-Thomas Invariants ”, Mem. Amer. Math. Soc. 217 (2012), no. 1020.
[29] Y-H. Kiem, J. Li, Categorification of Donaldson-Thomas invariants via Perverse Sheaves, arXiv:1212.6444.
[30] H. Kim, Moduli of Hermite-Einstein vector bundles, Math. Z. 195 (1987), 143 – 150.
[31] S. Kobayashi, “ Differential Geometry of Complex Vector Bundles ”, Publications of the Mathematical Society of Japan, 15; Princeton University Press, Princeton, NJ; Iwanami Shoten, Tokyo; 1987.
[32] M. Kontsevich, Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
[33] M. Kontsevich, Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), 231 – 352.
[34] M. Kontsevich, Y. Soibelman, Wall-crossing structures in Donaldson-Thomas invariants, integrable systems and mirror symmetry, in “ Homological Mirror Symmetry and Tropical Geometry ”, Lect. Notes Unione Mat. Ital., 15, Springer, Cham, 2014, 197 – 308.
[35] S. Lang, “ Real Analysis ”, Second edition, Addison-Wesley Publishing Company, Reading, MA, 1983.
[36] M. Lübke, A. Teleman, “ The Kobayashi-Hitchin Correspondence ”, World Scientific Publishing Co., Inc., River Edge, NJ, 1995.
[37] D. Maulik, D.N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory, I, Compos. Math. 142 (2006), 1263 – 1285.
[38] D. Maulik, D.N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-Thomas theory, II, Compos. Math. 142 (2006), 1286 – 1304.
[39] N. Nekrasov, Z-theory: chasing m/f theory, C. R. Phys. 6 (2005), 261 – 269.
[40] N. Nekrasov, H. Ooguri, C. Vafa, S-duality and topological strings, J. High Energy Phys. 10 (2004), 009.
[41] R. Reyes Carrión, A generalization of the notion of instanton, Differential Geom. Appl. 8 (1998), 1 – 20.
[42] S.M. Salamon, “ Riemannian Geometry and Holonomy Groups ”, Pitman Research Notes in Mathematics Series, 201; Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York; 1989.
[43] Y. Tanaka, A construction of Spin(7)-instantons, Ann. Global Anal. Geom. 42 (2012), 495 – 521.
[44] Y. Tanaka, A weak compactness theorem of the Donaldson-Thomas instantons on compact Kähler threefolds, J. Math. Anal. Appl. 408 (2013), 27 – 34.
[45] Y. Tanaka, A removal singularity theorem of the Donaldson-Thomas instanton on compact Kähler threefolds, J. Math. Anal. Appl. 411 (2014), 422 – 428.
[46] Y. Tanaka, Stable sheaves with twisted sections and the Vafa-Witten equations on smooth projective surfaces, Manuscripta Math. 146 (2015), 351 – 363.
[47] C.H. Taubes, Casson’s invariant and gauge theory, J. Differential Geom. 31 (1990), 547 – 599.
[48] R.P. Thomas, A holomorphic Casson invariant for Calabi-Yau 3-folds, and bundles on K3 fibrations, J. Differential Geom. 54 (2000), 367 – 438.
[49] G. Tian, Gauge theory and calibrated geometry, I, Ann. of Math. (2) 151 (2000), 193 – 268.
[50] K. Uhlenbeck, S-T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (suppl.) (1986), S257 – S293.
[51] K. Uhlenbeck, S-T. Yau, A note on our previous paper: On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 42 (1989), 703 – 707.
[52] R.O. Wells, Jr., “ Differential Analysis on Complex Manifolds ”, Third edition, with a new appendix by Oscar Garcia-Prada, Graduate Texts in Mathematics, 65, Springer, New York, 2008.